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� An accurate way of classifying Alzheimer’s Disease and Mild Cognitive Impairment is presented in this
article.

� The B distributed mapping function is proposed for constructing brain networks.
� Node2vec algorithm proved to be an accurate algorithm for extracting features from brain networks.

a b s t r a c t

Objective: Resting-state functional connectivity reveals a promising way for the early detection of
dementia. This study proposes a novel method to accurately classify Healthy Controls, Early Mild
Cognitive Impairment, Late Mild Cognitive Impairment, and Alzheimer’s Disease individuals.
Methods: A novel mapping function based on the B distribution has been developed to map correlation
matrices to robust functional connectivity. The node2vec algorithm is applied to the functional connec-
tivity to produce node embeddings. The concatenation of these embedding has been used to derive the
patients’ feature vectors for further feeding into the Support Vector Machine and Logistic Regression clas-
sifiers.
Results: The experimental results indicate promising results in the complex four-class classification prob-
lem with an accuracy rate of 97.73% and a quadratic kappa score of 96.86% for the Support Vector
Machine. These values are 97.32% and 96.74% for Logistic Regression.
Conclusion: This study presents an accurate automated method for dementia classification. Default Mode
Network and Dorsal Attention Network have been found to demonstrate a significant role in the classi-
fication method.
Significance: A new mapping function is proposed in this study, the mapping function improves accuracy
by 10–11% in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database.

� 2021 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights
reserved.
1. Introduction

Alzheimer’s disease (AD) is a continuum neurodegenerative dis-
ease that causes unchanging cognitive decline and neurodegenera-
tive dysfunction. The presence of b-amyloid plaques and
neurofibrillary tau deposits identifies AD (Dubois et al., 2016;
Jack et al., 2018). It has been found that getting older promotes dis-
ease progression (Brookmeyer et al., 2007). Mild Cognitive Impair-
ment (MCI) is an intermediary stage between healthy aging and
dementia. Also, MCI patients turn into AD ones at the rate of 10–
15% every year; it is a tremendous rate compared to the 1–2% risk
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of healthy aging transition to AD (Misra et al., 2009). There is no
specific treatment for Alzheimer’s disease. However, early detec-
tion of the disease helps plan for care and living arrangements,
research new diagnostic methods, examine new medications, and
experiment with strategies to prevent disease development
(Paquerault, 2012).

Consequently, the diagnosis of the progression of AD and other
stages of dementia are prominent. Researchers put much work into
developing algorithms and methods to detect different stages of
AD and dementia to tackle this requirement. This work is done
using data from various neuroimaging methods, including Positron
Emission Tomography (PET) (Duara et al., 2013), Elec-
troEncephaloGram (EEG) (Lehmann et al., 2007), Magnetoen-
cephalography (MEG) (Engels et al., 2016), and functional
Magnetic Resonance Imaging (fMRI) (Sheng et al., 2020).

Resting-state functional Magnetic Resonance Imaging (rs-fMRI)
is a non-invasive neuroimaging technique with a high spatial and
moderate temporal resolution. Accordingly, the blood-
oxygenation level-dependent (BOLD) signal is used to measure
spontaneous low-frequency fluctuations. Some studies have been
leveraged rs-fMRI’s BOLD signals to construct a functional connec-
tivity network (FCN) of the brain. Then, the interactions between
different brain regions are undertaken by FCN features to diagnose
AD and MCI (Wang et al., 2018). Studies have employed various
types of functional connectivity networks. However, most of the
methods have used stationary FCNs. (Bi et al., 2018a, 2018b;
Khazaee et al., 2015). However, some studies have also used
dynamic FCNs (Jie et al., 2018). (Chen et al., 2016) proposed a High
Order Resting-State Functional Connectivity method for detecting
Early Mild Cognitive Impairment (EMCI) patients from healthy
controls (HC). There have been several types of features extracted
from FCNs for further use in classifiers. Some of these features
include edge weights (Bi et al., 2018a; Zhang et al., 2015) and the
graph metrics like Node strengths, Node degrees(Sheng et al.,
2019), clustering coefficients (de Vos et al., 2018), betweenness
centrality (Sheng et al., 2019), eigenvector centrality (Son et al.,
2017), and Pagerank (Sheng et al., 2019). A few studies have lever-
aged graph embedding methods such as graph kernel (Sharaev
et al., 2019). (Tang et al., 2019) introduced an algorithm based on
random walks similar to node2vec to classify stages of MCI on
brain networks derived from MRI images.

There exist several atlases for parcellated analysis of the brain.
Automatic Anatomical Labeling (AAL) (Tzourio-Mazoyer et al.,
2002), 264 putative functional areas (Power et al., 2011),
Harvard-Oxford Cortical/Subcortical Atlas (Makris et al., 2006),
and Yeo 2011 functional parcellations (Yeo et al., 2011Buckner
et al., 2011) are some of the available atlases. Most studies use
the AAL atlas to parcellate the brain into 90 or 116 regions (Bi
et al., 2018b, 2018a; Jie et al., 2018; Khazaee et al., 2015). Parcel-
lated analysis improves the signal-to-noise ratio (SNR) by averag-
ing each region’s time series (Glasser et al., 2016). Thus, more
accurate parcellation leads to better results. (Khazaee et al.,
2016) showed how three HC, MCI, and AD groups could be appro-
priately classified with an accuracy rate of 88.4% using 264 puta-
tive functional areas atlas.

Many studies have used brain parcellation based on one neuro-
biological property such as architecture, function, connectivity, or
topography. HCP-MMP atlas (Glasser et al., 2016) combines multi-
ple Neurobiological properties and delineates 180 areas per hemi-
sphere from a group of 210 healthy young adults. The studies
suggest that HCP-MMP is the most detailed cortical parcellation
available in vivo2. (Sheng et al., 2019) applied this parcellation to
2 https://www.lead-dbs.org/helpsupport/knowledge-base/atlasesresources/corti-
cal-atlas-parcellations-mni-space/
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get competitive results in AD, EMCI, and Late Mild Cognitive Impair-
ment (LMCI) classification. The same parcellation was also used by
(Sheng et al., 2020) to classify HC, AD, and MCI in another study.
In some studies, the binary functional brain network was generated
from the correlation matrix using an adaptive or static threshold.
Other researchers have used the bare correlation matrix or the nor-
malized correlation matrix (using Fisher r-to-z transformation) as
their weighted FCNs.

This study proposes a method for automatically and efficiently
classifying AD, EMCI, and LMCI patients using some new features
that have not previously been explored. The details of the proposed
method are shown in Fig. 1.

2. Methods

2.1. Subjects

‘‘Data used in the preparation of this article were obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) data-
base (adni.loni.usc.edu). The ADNI was launched in 2003 as a
public–private partnership, led by Principal Investigator
Michael W. Weiner, MD. The primary goal of ADNI has been
to test whether serial magnetic resonance imaging (MRI), posi-
tron emission tomography (PET), other biological markers, and
clinical and neuropsychological assessment can be combined
to measure the progression of mild cognitive impairment
(MCI) and early Alzheimer’s disease (AD).”

Twenty-six AD, Thirty EMCI, Thirty-three LMCI patients, and
Thirty-six healthy controls with available resting-state fMRI data
have been adopted. (Xue et al., 2019; Zhang et al., 2019) provides
more information about ADNI’s data collection protocol and diag-
nostic criteria of AD, MCI, and HC. Subjects with more than
2 mm head translation, 2 degrees head rotation, Maximum frame-
wise displacements (FD) of more than 5 mm, mean FD of more
than 0.5 mm, and more than 90 out of 130 timesteps removed in
the motion scrubbing process have been discarded. Table 1 pre-
sents additional information on the remaining subjects.

2.2. Synthetic dataset

The proposed method is further examined by creating a syn-
thetic dataset with a conventional method. A normal distribution
is fitted to each individual’s weight strength from the preprocessed
brain network from the ADNI database. The fitted distributions
provide mean and standard deviation parameters. Then, a syn-
thetic brain network is drawn from these parameters. Fig. 2 pre-
sents a fitted distribution for a healthy control individual.

2.3. Preprocessing

These data were preprocessed by fMRIPrep 1.5.6 (Esteban et al.,
2019, 2018), an fMRI preprocessing pipeline software developed
using Nipype 1.4.0 (Esteban et al., 2020; Gorgolewski et al., 2011).

2.3.1. Anatomical data preprocessing
N4BiasFieldCorrection (Tustison et al., 2010), part of ANTs 2.2.0

registration suite (Avants et al., 2008), was used to correct inten-
sity non-uniformity (INU) of the T1-weighted images. During the
workflow, the corrected image is used as a T1w-reference. T1w-
reference was skull stripped using antsBrainExtraction.sh, and
OASIS30ANTs were used as the target template. The segmentation
of the brain into different tissue types (white matter (WM), cere-
brospinal fluid (CSF), and gray matter (GM)) was done using the
fast function from FSL 5.0.9 (Zhang et al., 2001). Recon-all program
from FreeSurfer 6.0.1 (Dale et al., 1999) was used to reconstruct

https://www.lead-dbs.org/helpsupport/knowledge-base/atlasesresources/cortical-atlas-parcellations-mni-space/
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Fig. 1. The proposed framework in this study. Note that T1 weighted images have been used in the preprocessing steps.AD: Alzheimer’s Disease.

Table 1
Basic information of selected participants. HC: Healthy Control, EMCI: early Mild Cognitive Impairment, LMCI: late Mild Cognitive Impairment, AD: Alzheimer’s Disease.

HC EMCI LMCI AD

No of subjects 36 30 33 26
Age(Mean ± SD) 75.78 ± 5.83 71.67 ± 7.50 71.76 ± 7.28 73.96 ± 7.63
Gender(Female/Male) 22/14 16/14 15/18 14/12
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brain surfaces. A custom method to provide ANTs-derived and
FreeSurfer-derived segmentation of Mindboggle’s cortical gray
matter (Klein et al., 2017) was used to fine-tune previously evalu-
ated brain mask. The ICBM 152 Nonlinear Asymmetrical template
version 2009c (MNI152NLin2009cAsym) (Fonov et al., 2009) was
chosen for volume-based spatial normalization. ANTs 2.3.30s
antsRegistration was used for nonlinear spatial normalization.
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2.3.2. Functional data preprocessing
As a first step, a reference volume and skull-stripped version

were created using a method implemented in fMRIPrep for each
of the 1 BOLD runs for each subject. A deformation field is calcu-
lated to correct distortions caused by Echo-planar Imaging (EPI)
based on fMRIPrep’s fieldmap-less approach. An inverted inten-
sity’s T1w-reference is co-registered with the BOLD reference to



3 https://github.com/BrainNetworksCourse/brain-networks-course/

Fig. 2. Normal distribution fitted to the edge weights of one of the healthy control
brain’s network.
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determine the deformation field (Huntenburg et al., 2014; Wang
et al., 2017). antsRegistration is used for registration. Only nonzero
values over the phase encoding direction are allowed during the
process to regulate the deformation, and a field map template is
used to modulate it (Treiber et al., 2016). Correction of the EPI ref-
erence was calculated using the estimated susceptibility distortion
to co-register with anatomical reference accurately. Using FreeSur-
fer’s bbregister program, a boundary-based registration (Greve and
Fischl, 2009) was applied to co-register BOLD with T1w reference.
This co-registration had nine degrees of freedom to eliminate the
remaining distortions in the BOLD reference. Prior to spatiotempo-
ral filtering using the mcflirt tool from FSL 5.0.9 (Jenkinson et al.,
2002), the BOLD reference’s head motion is estimated through
transformation matrices and six rotation and translation parame-
ters. The BOLD time series was resampled to fsaverage5 surface
to correct distortions due to head movement and susceptibility.
BOLD time series were resampled using a single composite trans-
form. In this paper, BOLD time series that are resampled is called
preprocessed BOLD in original space or preprocessed BOLD for con-
ciseness. Then preprocessed BOLD time-series were resampled into
the [’MNI152NLin2009cAsym’] space. The first step was to gener-
ate a reference volume and its skull-stripped version using fMRI-
Prep’s custom methodology.

The following signals were calculated after preprocessing the
BOLD: three region-wise global signals, DVARS, and FD. Nipype
implementations are used for FD and DVARS computations
(Power et al., 2014). Global signals are generated inside the WM,
CSF, and whole-brain masks. For component-based noise reduc-
tion, several physiological variables were extracted (Behzadi
et al., 2007)(CompCor). Discrete cosine high-pass filter with a cut-
off of 128 seconds is applied to the preprocessed BOLD time-series
separated into temporal and anatomical ComCor variants (tComp-
Cor and aCompCor, respectively) for estimating their principal
components. The tCompCor is extracted from the 5% highest vari-
able voxels within masks that cover the subcortical regions. The
brain mask is massively eroded to obtain this subcortical mask,
ensuring that it is exempt from GM regions in the cortex. Compo-
nents of aCompCor are computed by applying the above-
referenced mask’s intersection with the combination of the WM
and CSF masks based on the anatomical space. Within the WM
and CSF masks, components are also calculated separately. The k
leading components from each CompCor decomposition are kept.
The time series of these kept components are enough to account
for half of the variance over nuisance masks. As part of the correc-
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tion step, the head-motion measurements were also placed into
the corresponding confounding file. The time series of confounds
was extended by including quadratic and temporal terms for head
motions and global signals (Satterthwaite et al., 2013). Motion out-
liers were defined as frames that exceeded the FD threshold of 0.5
or the DVARS threshold of 1.5. All resamplings can be performed in
a single interpolation step by composing head-motion, susceptibil-
ity distortion correction, and co-registrations to anatomical and
output spaces transformations. To reduce the smoothing effects
of other kernels, gridded (volumetric) resamplings were carried
out using antApplyTransforms with Lanczos interpolation configu-
ration (Lanczos, 1964). FreeSurfer’s mri_vol2surf was used for non-
gridded surface resamplings.

fMRIPrep uses Nilearn 0.6.1 internally (Abraham et al., 2014),
mainly as part of the functional processing procedure. The fMRI-
Prep documentation offers more details on the pipeline.

Ten thousand and two-hundred and forty-two time-series ver-
tices per hemisphere (20484 total) on fsaverage5 space have been
obtained from the output of fMRIPrep. Then, the first ten volumes
are discarded. Linear detrending, temporal bandpass filtering
(0.01 Hz � 0.08 Hz), and confounds regression has been performed
using the Nilearn python library (signal clean method) (Abraham
et al., 2014). Confound regression has been conducted orthogonally
to temporal filters with the following parameters: head motion
parameters (Satterthwaite et al., 2013), global signal, cerebrospinal
fluid, framewise displacement, white matter, aCompCor (Muschelli
et al., 2014), std dvars, and cosine nuisances (Friston et al., 1994;
Lindquist et al., 2018). Motion scrubbing is performed with an FD
threshold value of 0.5 and a timepoint window removal length of
10 (Power et al., 2014). In our experiments, we used some of the
source code and data publicly available at the Brain Networks
course repository maintained by the department of psychology at
Stanford University3.

2.4. Functional connectivity networks

Graphs or networks play a significant role in demonstrating the
human brain’s functional and structural connectivity by modeling
the brain regions as nodes and the connections between them as
edges. There are two types of edges in graph theory: weighted
and unweighted (binary) edges. In graphs with binary edges, edges
can be present or absent. They do not provide further information
about the strength of the connection between two brain regions.
On the other hand, weighted graphs provide the strength of con-
nections between brain regions. In rs-fMRI studies (Chen et al.,
2016; Wang et al., 2018), functional connectivity is mainly formed
by establishing a correlation between the average time series
within brain regions. These correlations might be further used to
construct a correlation matrix. Correlation matrices need to be pro-
cessed so that they can be utilized as functional connectivity net-
works. There are two standard methods available to handle
negative values in correlation matrices. These values can be set
to zero or be replaced by their absolute values. Also, It is a common
choice to set self-correlations to zero (Rubinov and Sporns, 2010).
In this study, the first approach has been employed to handle neg-
ative values.

Let us assume half the weights are positive. Consider r as the
number of nodes in the graph. The result is a network whose num-
ber of edges is r(r � 1)/4 when negative values are converted to
zeros and r(r � 1)/2 when replaced with their absolute values. This
approach leads to a dense network. For the HCP-MMP atlas, the
number of edges for the scenarios mentioned earlier is 32,310
and 64,620 for only 360 nodes. Some studies employed a thresh-

https://github.com/BrainNetworksCourse/brain-networks-course/
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olding approach to deal with this degree of complexity (Bi et al.,
2018b). In the thresholding approach, a correlation matrix is con-
structed by setting values below the threshold to zeros while the
remaining values are set to ones or remain the same. A graph with
a more significant threshold value will be more sparse. Several
heuristics have been introduced to help evaluate the threshold
value more accurately. For instance, (Son et al., 2017) proposed a
method to find the threshold value so that the graph remains
strongly connected. In this study, the average time series for each
brain region within 360 discrete regions in the HCP-MMP atlas
(Glasser et al., 2016) is calculated. Then, Pearson’s correlation has
been evaluated between each pair of the averaged time-series to
determine the correlation matrices.

2.5. B distributed mapping function

In this paper, the following function is proposed to map the pro-
cessed correlation matrices to functional connectivity networks:

Equation (1)

f ðxÞ ¼ x� Bðx;a;bÞ ð1Þ
where the B is a continuous probability distribution function, it has
the following properties that make it beneficial for mapping corre-
lation values to the brain’s functional connectivity’s connection
strength: It is bounded on the interval [0,1], two positive parame-
ters, a, and b form the shape of the distribution, for a � 1 and
b � 1, the probability density function (PDF) of the B distribution
is monotonically increasing. It is a flexible distribution that makes
it possible to achieve squeezing and expanding properties. For
Fig. 3. B distributed mapping function for different values of a. As a in
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a > 1 and b � 1, small values are converted into near-zero numbers,
while larger values are transformed into more significant numbers.

This mapping function’s squeezing and expanding properties
scales the input value in a nonlinear manner, reinforcing the vital
information of the FCN while vanishing the negligible correlations
between the nodes. Consider two correlation values of 0.5 and 0.9;
the first value is typical and happens between many time series. In
contrast, the second value is rare, and time-series correlated with
the amount of 0.9 are strongly correlated. The second link is only
80% stronger than the first link without using the proposed map-
ping function. However, by applying this mapping function, with
parameters a = 2 and b = 1, the second link value changes to
1.62 and becomes 224% stronger. In Fig. 3, this function with differ-
ent a values, while b is fixed at one, has been compared. In Figs. 4
and 5, the functional connectivity network of a healthy control is
depicted. These images compare functional connectivity with and
without employing the proposed mapping function.

For different a parameter values, the connection strengths scale
varies in the connectivity networks derived from this mapping
function. The maximum value can be equal to the amount of a
for input equal to 1. However, Due to the removal of the nodes’
self-correlations, the values are smaller in practice. This value
might differ for each participant.

2.6. Node2Vec

Recent developments in deep learning, especially in natural lan-
guage processing (Mikolov et al., 2013), have led several studies to
extend language models to graph representation learning(Perozzi
creases, the expanding and squeezing properties become stronger.



Fig. 4. Functional connectivity network without using the proposed mapping function.
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et al., 2014; Tang et al., 2015). These models mainly consider a
graph as a document and sequences of random walks as sequences
of words in a document. The method proposed in (Grover and
Leskovec, 2016) is a successful graph representation learning algo-
rithm that uses a second-order random walk approach to generate
walk sequences. Let G = (V, E) be the brain network. The objective
of node2vec is to learn a mapping function f: V ? Rd, where d is a
parameter defined as the feature dimension size, and V is denoted
Fig. 5. Functional connectivity network u
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as the node-set of the graph. The function is derived by optimizing
the following objective function:

Equation (2)

maxf
X

u2V log Pr NS uð Þjf uð Þð Þ ð2Þ

for every node u in node-set V, Ns uð Þ is defined as the network
neighborhood of node u. In summary, this equation optimizes a
mapping function from a graph to an embedding space in which
sing the proposed mapping function.
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similar nodes in the original graph are close to each other in the
embedding space. The closeness of two nodes in the embedding
space can be defined as a dot product between two embeddings.

Node2vec employs a second-order random walk algorithm to
calculate the nodes’ network neighborhood. This procedure
receives two parameters; parameter p (return parameter) controls
the possibility of instantly revisiting a node in the walk. Further-
more, parameter q is defined as the in-out parameter that enables
the search possibility to distinguish between ‘‘inward” and ‘‘out-
ward” nodes. The transition probability of traversing from node v
to node x when the random walker has just crossed the edge

t; vð Þ derived from this procedure is equal to pvx ¼ apq t; xð ÞÂ �xvx,
where xvx indicates the edge weight (for unweighted graphs
xvx = 1), and:

Equation (3)

apq t; xð Þ ¼
1
p ifdtx ¼ 0

1ifdtx ¼ 1
1
p ifdtx ¼ 2

8><
>:

ð3Þ
Table 2
Comparing different approaches for the classification of Alzheimer’s disease and mild cogn
while few have investigated three classes. HC: Healthy Control, EMCI: early Mild Cognitiv
Support Vector Machine, LR: Logistic Regression, LASSO: least absolute shrinkage and selec
stages. The following three methods classify three stages of HC, MCI, and AD. Our approac

Study Participants Short description

(Khazaee
et al., 2015)

HC = 20
AD = 20

Various features are considered, such as average path
the SVM classifier.

(Jie et al.,
2014)

HC = 25
MCI = 12

This study employs Weisfeiler Lehman Graph kernels
feature selection, and SVM as the classifier.

(Bi et al.,
2018a)

HC = 25
AD = 35

Functional connectivity edge weights are used as feat
classifier. A random selection of features and subject

(Jie et al.,
2018)

HC = 50
EMCI = 56
LMCI = 43

BOLD time-series were segmented into non-overlapp
temporal nets. Spatial and temporal variability were
SVM was used as the classifier.

(Sheng et al.,
2019)

HC = 24
EMCI = 24
LMCI = 24
AD = 24

The classifier used in this study is the SVM, and its fea
efficiency, betweenness, and other measures derived

(Tang et al.,
2019)

EMCI = 72
LMCI = 39

This study proposes a random walk embedding meth
SVM classifier.

(Zhang et al.,
2019)

EMCI = 33
LMCI = 29

In this study, Functional connectivity is modeled usin
clustering coefficient, and characteristic path length
relevance, sparse linear regression feature selection,

(Son et al.,
2017)

HC = 35
MCI = 40
AD = 30

A random forest classifier is used to classify subjects

(Wang et al.,
2018)

HC = 12
MCI = 11
AD = 10

In this study, clustering coefficients serve as features,

(Sheng et al.,
2020)

HC = 24
MCI = 24
AD = 24

The features in this study include node strength, betw
measures of the network from the HCP-MMP brain atl
employed for feature selection, and linear SVM is use

Our method HC = 36
EMCI = 30
LMCI = 33
AD = 25

Results of this study for the ADNI database without u

Our method HC = 36
EMCI = 30
LMCI = 33
AD = 25

Results of this study for the ADNI database using the

Our method HC = 36
EMCI = 30
LMCI = 33
AD = 25

Results of this study for the synthetic database witho

Our method HC = 36
EMCI = 30
LMCI = 33
AD = 25

Results of this study for the synthetic database using
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dtx indicates the shortest path between nodes t and x. Further
information about node2vec is provided in the original paper
(Grover and Leskovec, 2016). This study utilizes small node
embedding (size = 4) calculated from short random walks (walk
length = 10). Graph embeddings are derived from concatenating
node embeddings. The reason for employing this embedding size
is to ensure that embedding contains sufficient information about
each node leading to a good representation of the whole brain net-
work, but not too much redundant information causing the curse
of dimensionality. Furthermore, since graphs are embedded using
the concatenation of each node’s embeddings, short random walks
are applied so that each node only contains information about its
adjacent neighboring.
2.7. Classification and evaluation criteria

This study used L2 regularized logistic regression (Zhu et al.,
1997) and linear support vector machine classifiers (Chang and
Lin, 2011; Fan et al., 2008). Linear classifiers such as logistic regres-
itive impairments. As shown, most of these works have used two-class classification,
e Impairment, LMCI: late Mild Cognitive Impairment, AD: Alzheimer’s Disease, SVM:
tion operator, LDA: linear discriminant analysis. The first seven methods classify two
h classifies four stages of HC, EMCI, LMCI, and AD.

Performance

length, average clustering coefficient, and others, to feed into ACC = 100%

in the multilevel network to generate features, LASSO for ACC = 91.9%

ures in this study, while ensembles of the SVM are used as the
s was applied to each SVM classifier.

ACC = 94.4%

ing windows, and Pearson correlations were used to construct
utilized as features, gLASSO was used for feature selection, and

ACC = 78.8%
LMCI vs. EMCI
ACC = 78.3%
EMCI vs. HC

tures include node strength, degree, clustering coefficient, local
from functional connectivity in the HCP-MMP atlas.

ACC = 93.8%
EMCI vs. HC
ACC = 95.8%
LMCI vs. HC
ACC = 95.8%
AD vs. HC

od in structural connectivity to classify participants using an ACC = 72.4%

g different frequency bands, global and local efficiency,
were utilized as features. Minimal redundancy, maximum
and fisher score methods were employed for feature selection.

ACC = 83.3%

in this study using eigenvector centralities as the features. ACC = 53.3%

regularized LDA to reduce noise, and ADA boost as the classifier. ACC = 75.8%

eenness centrality, clustering coefficient, and six other
as. Logistic regression recursive feature elimination algorithm is
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Fig. 6. Accuracy and Kappa score for different values of a.SVM: Support Vector Machine.
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sion and linear support vector machines are resilient to overfitting.
The pipeline is evaluated through fivefold cross-validation. The
cross-validation procedure is repeated 100 times to avoid noisy
model performance.

The random walk procedure can be controlled by the Node2vec
algorithm with two independent variables called p and q, which
are fixed at one in this study. This procedure is applied for the fol-
lowing a values: 1,2,3,5,7,9,12,15,17,19,21,23, and the b value
remains a constant of one for all cases. Note that, when a = b = 1
, this mapping function returns its input.

This study reports the accuracy and the quadratic weighted
Cohen’s kappa score (Cohen, 1968) in the final results. Accuracy is
a simple criterion that measures the proportion of the correctly
classified samples to the number of all samples. While accuracy
is vital for classifiers, it leaves out some essential information.
Imagine two different classification schemes, one of which wrongly
classifies an Alzheimer’s patient as Healthy Control, and the other
misclassifies the patient as Late Mild Cognitive Impairment. The
accuracy of both classifiers is the same. However, the second clas-
sifier outperforms the first one because Late Mild Cognitive Impair-
ment is more like Alzheimer’s disease than Healthy Control.
Table 3
Importance of features based on the brain cortexes and the yeodesc7 network assignm
Cognitive Impairment, AD: Alzheimer’s Disease. The numbers indicate the cortexes and re

Cortex name/Importance (%) CN EMCI LMCI

posterior cingulate cortex 8.19 11.20 7.73
anterior cingulate and medial prefrontal cortex 8.93 9.56 7.26
dorsolateral prefrontal cortex 8.41 8.73 7.74
mt + complex and neighboring visual areas 3.70 4.86 6.64
inferior parietal cortex 6.80 5.88 5.90
superior parietal cortex 7.97 3.85 7.97
insular and frontal opercular cortex 7.38 6.51 5.74
medial temporal cortex 4.21 3.42 2.69
inferior frontal cortex 3.73 4.39 3.55
auditory association cortex 3.05 4.53 4.14
lateral temporal cortex 4.34 5.31 4.38
orbital and polar frontal cortex 5.12 7.05 5.06
ventral stream visual cortex 2.97 2.90 4.09
paracentral lobular and mid cingulate cortex 5.33 3.84 4.08
dorsal stream visual cortex 2.88 2.88 4.53
early auditory cortex 2.30 2.64 3.02
posterior opercular cortex 3.57 3.11 3.12
somatosensory and motor cortex 2.98 2.35 2.74
premotor cortex 4.59 2.74 3.63
early visual cortex 0.88 1.51 2.55
temporo-parieto-occipital junction 2.14 2.24 2.74
primary visual cortex 0.42 0.39 0.60
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Multiclass classification in medical tasks is plagued with this
problem.

Nevertheless, the problem can be solved using the Kappa score.
Kappa score is a statistic that measures the agreement between the
classifier and the expert diagnosis. The kappa score of one indicates
complete agreement, zero indicates random agreement, and nega-
tive values indicate worse than a random agreement between
raters. The quadratic weighted kappa score employs a quadratic
weight for the distance of misclassification. Considering the two
classifiers mentioned above, the second gets a penalty of one, while
the first gets nine (¼ 32).
2.8. Nodes importance calculation

The normalized coefficient magnitude of the logistic regression
classifier for each feature is initially found to further calculate each
node’s importance. This value indicates the importance of an ele-
ment. Each node is represented using four values. To calculate
the significance of the nodes, features corresponding to each node
are summed to obtain node importance. The cumulative values are
normalized to add up to 1 to express these values by percentages.
ents. HC: Healthy Control, EMCI: early Mild Cognitive Impairment, LMCI: late Mild
gions by percentage.

AD Region/Importance(%) CN EMCI LMCI AD

7.97 default 21.43 31.19 22.30 23.89
8.31 visual 12.27 13.64 18.58 17.63
8.46 Somato motor 14.66 13.78 14.90 13.60
5.43 dorsal attention 15.59 9.27 15.73 13.19
5.91 frontoparietal 13.55 13.20 11.66 13.62
5.63 ventral attention 15.40 10.83 10.72 11.31
6.34 limbic 7.07 8.05 6.08 6.72
3.23
5.00
3.63
4.57
6.22
4.45
3.89
3.97
2.30
2.83
2.55
4.00
2.30
2.19
0.60
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Furthermore, aggregating each node’s importance in the cortexes’
importance has been calculated based on the information from
(Glasser et al., 2016).

Consequently, MMP regions would be mapped to the yeo net-
work assignments (Buckner et al., 2011) for better comparison
with the other studies. Since the one vs. rest method is used in this
study, the importance of each class could be found.

3. Results

The proposed method presents a trustworthy representation of
the brain connectivity network, leading to promising results in the
classification of Healthy Controls and individuals with EMCI, LMCI,
and AD. Support vector machine and Logistic regression classifiers
both provide similar results using the proposed mapping function.
It provides ten percent improvement in accuracy and fifteen per-
cent improvement in quadratic kappa scores for the ADNI data-
base. For the synthetic database, these numbers are about two
and one percent, respectively. One thing that stands out in this
study is that all dementia stages can be classified using a single
pipeline. The majority of the studies employ a binary classification.
A summary of different studies on dementia classification is pre-
sented in Table 2. As is evident from Table 2, many of these works
examined binary classification. Moreover, fewer studies focused on
the three-class dementia problem. Fig. 6 provides a comparison of
accuracy and kappa scores with different a values.

In the classification of dementia, important cortices were the
posterior cingulate cortex, the dorsolateral prefrontal cortex, the
anterior cingulate, and the medial prefrontal cortex. Cortexes men-
tioned above are part of DMN and DAN, which is proved to have an
essential role in the progression toward AD and MCI (Choo et al.,
2010; Esposito et al., 2018; Sheng et al., 2019). Cortex and network
importance statistics are presented in Table 3.

4. Discussions

Experiments performed in this study for ADNI and synthetic
databases show that using this mapping function can substantially
improve performance. Nevertheless, Further research is needed to
assess the efficacy of the proposed method with other neuroimag-
ing modalities and neurological disorders in the future.

5. Conclusions

This study proposed a method for automatically and efficiently
classifying AD, EMCI, and LMCI patients using some new features
that have not previously been explored. This paper made the fol-
lowing main contributions:

� Node2vec (Grover and Leskovec, 2016), which has been proved
to be one of the successful methods for node embeddings in
many fields of research (Ata et al., 2018; Peng et al., 2019;
Zhao et al., 2019), has been exploited as features for Support
Vector Machine and Logistic Regression classifiers in Functional
Brain Networks in HCP-MMP atlas.

� A new mapping function for the construction of functional con-
nectivity has been proposed in this study. Networks derived
from this mapping function have the benefits of thresholded
binary networks and weighted networks together. The pro-
posed mapping function squeezes small correlations toward
zero and expands the remaining with substantial correlations
with more significant weights. The primary motivation behind
the B distributed mapping function’s development is that using
raw correlation values as the connection strength between
nodes could not be a proper solution. Since, in this study, fea-
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tures are attained using a random walk procedure. In the men-
tioned network types, the random walker has a high probability
of traversing unessential links and missing the important links.
One of the crucial issues is to find a way to form a better con-
nectivity matrix from those correlation matrices. The proposed
mapping function squeezes small correlations toward zero and
magnifies more significant values. In this way, the probability
that the random walker moves to another nodes with a more
powerful link becomes much higher.
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